Categories

Contact Us

Zhongneng Chengyu Power Co.,Ltd

Address: No.216 Changjiang Road, Huangdao Development District, Qingdao City, Shandong Province, China

E-mail: info@chengyupower.com

Tel: +86-532-86934246

Fax: +86-532-86934246

Rechargeable battery Rate of discharge

- May 15, 2018 -

Rechargeable battery Rate of discharge


Battery charging and discharging rates are often discussed by referencing a "C" rate of current. The C rate is that which would theoretically fully charge or discharge the battery in one hour. For example, trickle charging might be performed at C/20 (or a "20 hour" rate), while typical charging and discharging may occur at C/2 (two hours for full capacity). The available capacity of electrochemical cells varies depending on the discharge rate. Some energy is lost in the internal resistance of cell components (plates, electrolyte, interconnections), and the rate of discharge is limited by the speed at which chemicals in the cell can move about. For lead-acid cells, the relationship between time and discharge rate is described by Peukert's law; a lead-acid cell that can no longer sustain a usable terminal voltage at a high current may still have usable capacity, if discharged at a much lower rate. Data sheets for rechargeable cells often list the discharge capacity on 8-hour or 20-hour or other stated time; cells for uninterruptible power supply systems may be rated at 15 minute discharge.


The terminal voltage of the battery is not constant during charging and discharging. Some types have relatively constant voltage during discharge over much of their capacity. Non-rechargeable alkaline and zinc–carbon cells output 1.5V when new, but this voltage drops with use. Most NiMH AA and AAA cells are rated at 1.2 V, but have a flatter discharge curve than alkalines and can usually be used in equipment designed to use alkaline batteries.


Battery manufacturers' technical notes often refer to voltage per cell (VPC) for the individual cells that make up the battery. For example, to charge a 12 V lead-acid battery (containing 6 cells of 2 V each) at 2.3 VPC requires a voltage of 13.8 V across the battery's terminals.


Previous: Rechargeable battery damage from cell reversa Next: Deep cycle battery ratings

Related Industry Knowledge

Related Products